Gaussian process state-space model (GPSSM) is a fully probabilistic state-space model that has attracted much attention over the past decade. However, the outputs of the transition function in the existing GPSSMs are assumed to be independent, meaning that the GPSSMs cannot exploit the inductive biases between different outputs and lose certain model capacities. To address this issue, this paper proposes an output-dependent and more realistic GPSSM by utilizing the well-known, simple yet practical linear model of coregionalization (LMC) framework to represent the output dependency. To jointly learn the output-dependent GPSSM and infer the latent states, we propose a variational sparse GP-based learning method that only gently increases the computational complexity. Experiments on both synthetic and real datasets demonstrate the superiority of the output-dependent GPSSM in terms of learning and inference performance.
translated by 谷歌翻译
The last several years have witnessed remarkable progress in video-and-language (VidL) understanding. However, most modern VidL approaches use complex and specialized model architectures and sophisticated pretraining protocols, making the reproducibility, analysis and comparisons of these frameworks difficult. Hence, instead of proposing yet another new VidL model, this paper conducts a thorough empirical study demystifying the most important factors in the VidL model design. Among the factors that we investigate are (i) the spatiotemporal architecture design, (ii) the multimodal fusion schemes, (iii) the pretraining objectives, (iv) the choice of pretraining data, (v) pretraining and finetuning protocols, and (vi) dataset and model scaling. Our empirical study reveals that the most important design factors include: temporal modeling, video-to-text multimodal fusion, masked modeling objectives, and joint training on images and videos. Using these empirical insights, we then develop a step-by-step recipe, dubbed VindLU, for effective VidL pretraining. Our final model trained using our recipe achieves comparable or better than state-of-the-art results on several VidL tasks without relying on external CLIP pretraining. In particular, on the text-to-video retrieval task, our approach obtains 61.2% on DiDeMo, and 55.0% on ActivityNet, outperforming current SOTA by 7.8% and 6.1% respectively. Furthermore, our model also obtains state-of-the-art video question-answering results on ActivityNet-QA, MSRVTT-QA, MSRVTT-MC and TVQA. Our code and pretrained models are publicly available at: https://github.com/klauscc/VindLU.
translated by 谷歌翻译
Pre-trained language models (PLMs) have exhibited remarkable few-shot learning capabilities when provided a few examples in a natural language prompt as demonstrations of test instances, i.e., in-context learning. However, the performance of in-context learning is susceptible to the choice of prompt format, training examples and the ordering of the training examples. In this paper, we propose a novel nearest-neighbor calibration framework for in-context learning to ease this issue. It is inspired by a phenomenon that the in-context learning paradigm produces incorrect labels when inferring training instances, which provides a useful supervised signal to calibrate predictions. Thus, our method directly augments the predictions with a $k$-nearest-neighbor ($k$NN) classifier over a datastore of cached few-shot instance representations obtained by PLMs and their corresponding labels. Then adaptive neighbor selection and feature regularization modules are introduced to make full use of a few support instances to reduce the $k$NN retrieval noise. Experiments on various few-shot text classification tasks demonstrate that our method significantly improves in-context learning, while even achieving comparable performance with state-of-the-art tuning-based approaches in some sentiment analysis tasks.
translated by 谷歌翻译
Deep transfer learning has been widely used for knowledge transmission in recent years. The standard approach of pre-training and subsequently fine-tuning, or linear probing, has shown itself to be effective in many down-stream tasks. Therefore, a challenging and ongoing question arises: how to quantify cross-task transferability that is compatible with transferred results while keeping self-consistency? Existing transferability metrics are estimated on the particular model by conversing source and target tasks. They must be recalculated with all existing source tasks whenever a novel unknown target task is encountered, which is extremely computationally expensive. In this work, we highlight what properties should be satisfied and evaluate existing metrics in light of these characteristics. Building upon this, we propose Principal Gradient Expectation (PGE), a simple yet effective method for assessing transferability across tasks. Specifically, we use a restart scheme to calculate every batch gradient over each weight unit more than once, and then we take the average of all the gradients to get the expectation. Thus, the transferability between the source and target task is estimated by computing the distance of normalized principal gradients. Extensive experiments show that the proposed transferability metric is more stable, reliable and efficient than SOTA methods.
translated by 谷歌翻译
Diffusion models, which learn to reverse a signal destruction process to generate new data, typically require the signal at each step to have the same dimension. We argue that, considering the spatial redundancy in image signals, there is no need to maintain a high dimensionality in the evolution process, especially in the early generation phase. To this end, we make a theoretical generalization of the forward diffusion process via signal decomposition. Concretely, we manage to decompose an image into multiple orthogonal components and control the attenuation of each component when perturbing the image. That way, along with the noise strength increasing, we are able to diminish those inconsequential components and thus use a lower-dimensional signal to represent the source, barely losing information. Such a reformulation allows to vary dimensions in both training and inference of diffusion models. Extensive experiments on a range of datasets suggest that our approach substantially reduces the computational cost and achieves on-par or even better synthesis performance compared to baseline methods. We also show that our strategy facilitates high-resolution image synthesis and improves FID of diffusion model trained on FFHQ at $1024\times1024$ resolution from 52.40 to 10.46. Code and models will be made publicly available.
translated by 谷歌翻译
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19. However, there are still some challenges for developing AI system. 1) Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint. 2) Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume. 3) The emergent breaking out of COVID-19 makes it hard to annotate sufficient CT volumes for training deep model. To address these issues, we first build a multiple dimensional-attention convolutional neural network (MDA-CNN) to aggregate multi-scale information along different dimension of input feature maps and impose supervision on multiple predictions from different CNN layers. Second, we assign this MDA-CNN as a basic network into a novel dual multi-scale mean teacher network (DM${^2}$T-Net) for semi-supervised COVID-19 lung infection segmentation on CT volumes by leveraging unlabeled data and exploring the multi-scale information. Our DM${^2}$T-Net encourages multiple predictions at different CNN layers from the student and teacher networks to be consistent for computing a multi-scale consistency loss on unlabeled data, which is then added to the supervised loss on the labeled data from multiple predictions of MDA-CNN. Third, we collect two COVID-19 segmentation datasets to evaluate our method. The experimental results show that our network consistently outperforms the compared state-of-the-art methods.
translated by 谷歌翻译
Virtual reality (VR) over wireless is expected to be one of the killer applications in next-generation communication networks. Nevertheless, the huge data volume along with stringent requirements on latency and reliability under limited bandwidth resources makes untethered wireless VR delivery increasingly challenging. Such bottlenecks, therefore, motivate this work to seek the potential of using semantic communication, a new paradigm that promises to significantly ease the resource pressure, for efficient VR delivery. To this end, we propose a novel framework, namely WIreless SEmantic deliveRy for VR (WiserVR), for delivering consecutive 360{\deg} video frames to VR users. Specifically, deep learning-based multiple modules are well-devised for the transceiver in WiserVR to realize high-performance feature extraction and semantic recovery. Among them, we dedicatedly develop a concept of semantic location graph and leverage the joint-semantic-channel-coding method with knowledge sharing to not only substantially reduce communication latency, but also to guarantee adequate transmission reliability and resilience under various channel states. Moreover, implementation of WiserVR is presented, followed by corresponding initial simulations for performance evaluation compared with benchmarks. Finally, we discuss several open issues and offer feasible solutions to unlock the full potential of WiserVR.
translated by 谷歌翻译
Federated learning (FL) enables the building of robust and generalizable AI models by leveraging diverse datasets from multiple collaborators without centralizing the data. We created NVIDIA FLARE as an open-source software development kit (SDK) to make it easier for data scientists to use FL in their research and real-world applications. The SDK includes solutions for state-of-the-art FL algorithms and federated machine learning approaches, which facilitate building workflows for distributed learning across enterprises and enable platform developers to create a secure, privacy-preserving offering for multiparty collaboration utilizing homomorphic encryption or differential privacy. The SDK is a lightweight, flexible, and scalable Python package, and allows researchers to bring their data science workflows implemented in any training libraries (PyTorch, TensorFlow, XGBoost, or even NumPy) and apply them in real-world FL settings. This paper introduces the key design principles of FLARE and illustrates some use cases (e.g., COVID analysis) with customizable FL workflows that implement different privacy-preserving algorithms. Code is available at https://github.com/NVIDIA/NVFlare.
translated by 谷歌翻译
Localizing anatomical landmarks are important tasks in medical image analysis. However, the landmarks to be localized often lack prominent visual features. Their locations are elusive and easily confused with the background, and thus precise localization highly depends on the context formed by their surrounding areas. In addition, the required precision is usually higher than segmentation and object detection tasks. Therefore, localization has its unique challenges different from segmentation or detection. In this paper, we propose a zoom-in attentive network (ZIAN) for anatomical landmark localization in ocular images. First, a coarse-to-fine, or "zoom-in" strategy is utilized to learn the contextualized features in different scales. Then, an attentive fusion module is adopted to aggregate multi-scale features, which consists of 1) a co-attention network with a multiple regions-of-interest (ROIs) scheme that learns complementary features from the multiple ROIs, 2) an attention-based fusion module which integrates the multi-ROIs features and non-ROI features. We evaluated ZIAN on two open challenge tasks, i.e., the fovea localization in fundus images and scleral spur localization in AS-OCT images. Experiments show that ZIAN achieves promising performances and outperforms state-of-the-art localization methods. The source code and trained models of ZIAN are available at https://github.com/leixiaofeng-astar/OMIA9-ZIAN.
translated by 谷歌翻译
供应链平台(SCP)为下游行业提供了许多原材料。与传统的电子商务平台相比,由于用户兴趣有限,SCP中的数据更为稀疏。为了解决数据稀疏问题,可以应用跨域建议(CDR),从而通过源域信息提高目标域的建议性能。但是,将CDR应用于SCP,直接忽略了SCP中商品的层次结构,从而降低了建议性能。为了利用此功能,在本文中,我们以餐饮平台为例,并提出了图形跨域推荐模型GRES。该模型首先构造了树状图,以表示菜肴和成分不同节点的层次结构,然后应用我们提出的Tree2Vec方法将GCN和BERT模型组合到嵌入图中以嵌入图表以获取建议。商业数据集上的实验结果表明,GRES在供应链平台的跨域建议中明显优于最先进的方法。
translated by 谷歌翻译